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ABSTRACT

Observed and modeled rainfall occurrence from shallow (warm) maritime clouds and their composite

statistical relationships with cloud macrophysical properties are analyzed and directly compared. Rain falls

from;25%of warm, single-layered, maritime clouds observed byCloudSat and from;27%of the analogous

warm clouds simulated within a large-domain, fine-resolution radiative–convective equilibrium experiment

performed using the Regional Atmospheric Modeling System (RAMS), with its sophisticated bin-emulating

bulk microphysical scheme.While the fractional occurrence of observed and simulated warm rainfall is found

to increase with both increasing column-integrated liquid water and cloud depth, calculations of rainfall

occurrence as a joint function of these two macrophysical quantities suggest that the modeled bulk cloud-to-

rainwater conversion process is more efficient than observations indicate—in agreement with previous re-

search. Unexpectedly and in opposition to the model-derived relationship, deeper CloudSat-observed warm

clouds with little column water mass are more likely to rain than their corresponding shallow counterparts,

despite having lower cloud-mean water contents. Given that these composite relationships were derived from

statically identified warm clouds, an attempt is made to quantitatively explore rainfall occurrence within the

context of the warm cloud life cycle. Extending a previously established cloud-top buoyancy analysis tech-

nique, it is shown that rainfall likelihoods from positively buoyant RAMS-simulated clouds more closely

resemble the surprising observed relationships than do those derived from negatively buoyant simulated

clouds. This suggests that relative to the depiction of warm clouds within the RAMS output, CloudSat ob-

serves higher proportions of positively buoyant, developing warm clouds.

1. Introduction

Low-level, liquid-phase (warm) clouds cover vast

portions of the global oceans (e.g., Mace et al. 2007;

Medeiros et al. 2010) and play a critical role in the global

energy balance (e.g., Hartmann et al. 1992). Varying in

form from temporally persistent stratocumulus decks

only a few hundred meters thick to transient trade wind

cumulus clouds with depths approaching 3–4 km, these

clouds are commonly found in regions characterized by

large-scale atmospheric subsidence. The simulation of

marine boundary layer clouds represents a large source

of uncertainty for estimates of climate sensitivity (e.g.,

Bony and Dufresne 2005; Webb et al. 2006). Uncer-

tainties in the parameterized microphysical processes

active within these clouds lead to a global climate model

depiction of rainfall that is generally too frequent and

too light (Stephens et al. 2010).

Rain from warm, maritime clouds is typically not as

heavy as that which falls from deeper convection (rates

of less than a fewmillimeters per hour; e.g., Lebsock and

L’Ecuyer 2011; Berg et al. 2010). However, it is ubiq-

uitous and, thus, contributes nonnegligibly to the total

amount of precipitation that falls over the globe. Active

satellite remote sensors have been used to estimate that

warm rainfall accounts for ;20% of the total rain that

falls over the oceans (Short and Nakamura 2000; Lau

and Wu 2003; Liu and Zipser 2009; Chen et al. 2011).

While early observational studies concluded that

rainfall from warm, maritime clouds was common (e.g.,

Byers and Hall 1955), more recent analyses have uti-

lized both surface- and satellite-based observations to

quantify the fractional occurrence of rainfall from this

cloud type. Based on data collected during the Rain in
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Cumulus over the Ocean (RICO; Rauber et al. 2007)

field campaign in the western tropical North Atlantic,

it was estimated that ;10% of the observed shallow

cloud distribution produced rain (Nuijens et al. 2009;

Snodgrass et al. 2009). Given its global coverage and

unique sensitivity to both cloud droplet hydrometeors

and light rainfall, many recent studies have employed

CloudSat (Stephens et al. 2002)—the sensor utilized in

the present study—to estimate the frequency of occur-

rence of rainfall from warm clouds over the oceans

(Haynes and Stephens 2007; Lebsock et al. 2008; Leon

et al. 2008; Kubar et al. 2009; Chen et al. 2011; Suzuki

et al. 2011; Rapp et al. 2013; Christensen et al. 2013).

Using a profile-maximum CloudSat reflectivity drizzle

threshold, Kubar et al. (2009) estimated that up to 80%

of the identified warm clouds over the central Pacific

Ocean contained drizzle or rain hydrometeors at some

vertical level. Taking a more conservative approach,

Lebsock et al. (2008) used near-surface CloudSat re-

flectivity to identify rainfall incidence and accounted

for warm clouds undetected by CloudSat (cloud tops

obscured by surface contamination and/or low re-

flectivities), but observed by the Moderate Resolution

Imaging Spectroradiometer (MODIS), to estimate that

only 6.5% of warm clouds over the global oceans cer-

tainly produced rainfall adjacent to the surface. The

rainfall occurrence differences between these latter two

highlighted observational studies point to a need for

defining rainfall in a consistent manner, especially if

models are to be evaluated against observations.

Examining how the frequency of occurrence of rain-

fall from these warm clouds is related to cloud macro-

physical properties—the large-scale characteristics of

the clouds themselves—can provide insight into the

factors affecting the warm rain processes active within

this cloud type. Observational evidence from both

ground-based sensors (Zuidema et al. 2005; Rémillard

et al. 2012) and spaceborne sensors (Lebsock et al. 2008;

Leon et al. 2008; Kubar et al. 2009; L’Ecuyer et al. 2009;

Chen et al. 2011; Suzuki et al. 2011; Christensen et al.

2013) has indicated that warm clouds with higher cloud

liquid water paths—the vertically integrated liquid wa-

ter mass within the cloud column—are more likely to

produce drizzle and rain. This suggests that warm clouds

are most likely to develop precipitation when greater

amounts of cloud water are available for warm rain

processes. A strong link has also been observed between

cloud depth and warm rain production (Byers and Hall

1955; Nuijens et al. 2009; Stephens et al. 2008a; Kubar

et al. 2009; Snodgrass et al. 2009; Reiche and Lasher-

Trapp 2010; Rémillard et al. 2012; Christensen et al.

2013). The physical reason for the existence of the latter

relationship remains less clear but could be related to

such key, and potentially interrelated, factors as liquid

water availability and relative cloud age (e.g., Reiche

and Lasher-Trapp 2010).

Warm rain collision and coalescence processes within

cloud-resolving models and larger-scale climate models

are commonly parameterized through empirically de-

rived cloud-to-rain conversion rates (e.g., Kessler 1969;

Manton and Cotton 1977). To assess relative model skill

at representing warm rain formation processes, Suzuki

et al. (2011) compared warm rain statistics observed

over the global oceans byCloudSat andMODIS to those

simulated with regional and global cloud-resolving

models. Regional simulation output analyzed in that

study was from a large-domain, high-resolution radia-

tive–convective equilibrium (RCE) experiment per-

formed with the Regional Atmospheric Modeling

System (RAMS; Cotton et al. 2003; Saleeby and van den

Heever 2013) using two-moment, bin-emulating micro-

physics, while global model output was obtained from a

simulation performed using a simpler, single-moment

Kessler-type microphysical scheme within the Non-

hydrostatic Icosahedral Atmospheric Model (NICAM;

Tomita and Satoh 2004; Satoh et al. 2008). It was shown

that for the same liquid water path, both models pro-

duced drizzle and rain more readily than observations

suggested. However, RAMS and its more sophisticated

microphysical scheme significantly outperformedNICAM

in its depiction of the efficiency with which cloud water

was converted to drizzle and rainwater. Given the re-

alistic representation of warm rain processes in RAMS,

this study now further analyzes the characteristics of

warm rain simulated using this model.

Composite rainfall statistics derived from instantaneous

snapshots of clouds that are in various stages of growth,

maturity, and dissipation inherently reflect the amount

of time the clouds spend within these life cycle stages.

However, as clouds develop and mature in time, it is

likely that their associated macrophysical properties

(e.g., geometric depth and liquid water path) evolve

prior to the onset of rainfall (e.g., Reiche and Lasher-

Trapp 2010; Burnet and Brenguier 2010; Witte et al.

2014). In an effort to more accurately characterize in-

stantaneous CloudSat observations of identified cu-

mulus congestus clouds, Luo et al. (2009) developed a

methodology that provided a dynamic context for

snapshot observations of this deep convective cloud

type. The concept was based upon assessing whether

the tops of clouds were, at the time of observation,

positively or negatively buoyant relative to their sur-

rounding environment. Positively buoyant (transient)

clouds, those with cloud-top temperatures warmer than

the environmental temperature at the same height,

were interpreted to have been actively growing when
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observed; negatively buoyant (terminal) clouds were

more likely to have already ceased their vertical de-

velopment. While Luo et al. (2009) did not investigate

rainfall or shallow clouds within their terminal–transient

framework, an attempt is made within this study to

apply a similar analysis technique to quantitatively

explore warm rainfall occurrence within the context of

cloud life cycle.

The principal aim of this study is to compare com-

posite statistical relationships between warm rainfall

occurrence and cloud macrophysical properties ob-

served by CloudSat to those simulated with RAMS. To

this end, the research presented herein aims to address

the three following questions:

1) What percentage of CloudSat-observed warm clouds

produce rainfall over the global oceans, and how

does this frequency compare to that simulated with

RAMS?

2) How is warm rainfall occurrence statistically related

to two key macrophysical parameters—column-

integrated water mass and cloud depth—and what do

these relationships imply about rainfall production

within these warm clouds?

3) What insight, if any, do these warm rainfall occur-

rence statistics provide on the nature of the life cycle

of clouds within these distributions?

To address these questions, a methodology designed to

identify and compare CloudSat-observed and RAMS-

simulated warm, single-layered clouds in a consistent

manner is outlined within section 2. Warm rainfall oc-

currence statistics and their composite relationships with

cloud macrophysical properties for this warm cloud sub-

set are presented within section 3. Based on these results,

the influence of warm cloud life cycle on these rainfall

occurrence statistics is examined within section 4.

2. Data and methods

a. CloudSat observations

The observational datasets used throughout this study

were derived from CloudSat (Stephens et al. 2002), a

mission that flies a nadir-pointing 94-GHz (W band) cloud

profiling radar (CPR; Im et al. 2005). The CPR has ap-

proximate footprint dimensions of 1.7km 3 1.4km (along

and cross track, respectively) and apulse length–determined

vertical resolution of 480m that is oversampled to 240m.

With a minimum detectable signal of approximately

230 dBZ, the CPR is a well-suited instrument to ob-

serve clouds and their transition to producing precipita-

tion. All CloudSat results presented within this study

have been derived from an ocean-only data record ex-

tending from July 2006 to April 2011 (;4.75yr).

Observed cloud vertical extent properties were ob-

tained from the CloudSat geometrical profiling product

(2B-GEOPROF) cloud mask (Marchand et al. 2008).

Generally, as 2B-GEOPROF cloudmask values increase

from 10 (very weak echo) to a maximum of 40 (strong

echo), the percentage of possible false hydrometeor de-

tections decreases from ,50% to ,0.2%. For this study,

cloudy range bins within the CloudSat profiles were de-

fined as those with a 2B-GEOPROF cloud mask value

$20, a threshold that removed likely surface clutter from

the analysis and ensured that the percentage of false

hydrometeor detection was ;5% (Marchand et al.

2008). Utilizing this definition, vertically contiguous

cloudy CloudSat range bins, and the heights of these

range bins, were used to determine cloud-echo-top and

-base heights for cloud layers within the observed pro-

files. To directly examine the relationships between

liquid-phase cloud geometric characteristics and cloud

column–integrated properties, the analysis was restricted

to profiles containing single cloud layers with echo-top

heights at or below the scene’s freezing-level height—afield

calculated from ancillary temperature profile information

from theCloudSatEuropeanCentre forMedium-Range

Weather Forecasts (ECMWF) auxiliary data product

(ECMWF-AUX). As very few warm clouds were de-

tected at high latitudes, the analysis was limited to scenes

observed equatorward of 708N and 708S.
The resulting database contained 20.5millionCloudSat

observations of warm, single-layered clouds. The zonal-mean

FIG. 1. Zonally averaged freezing-level height (red), cloud-echo-

top height (black), cloud-echo-base height (gray), and lifting con-

densation level (blue) for CloudSat-observed warm, single-layered

clouds. Thick lines represent the zonal mean, and dotted lines

represent the zonal standard deviation about the zonal mean. The

underlying green curve represents the percentage contribution of

cloud counts from each zonal band to the total number of observed

clouds. For Figs. 1 and 2, native-resolution CloudSat data were

gridded to a 58 lat 3 58 lon resolution.
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vertical extent characteristics of this core dataset (Fig. 1) in-

dicate that the zonal-mean cloud-echo-top heights (CT;

black) mirror the latitudinal variation in freezing-level

height (FL; red), with a maximum near the equator and

minima at the poleward latitude extrema considered in

this analysis. The zonal consistency in the identified

cloud-echo-base heights (CB; gray)may in part be related

to either surface clutter limiting CloudSat’s ability to

detect cloud bases located within the three lowest ver-

tical range gates (below;720m) or to rainfall obscuring

actual cloud bases in precipitating scenes. However, the

mean lifting condensation level (LCL; blue) calculated

for this cloud distribution from ancillary ECMWF-AUX

temperature and specific humidity fields was 570m, a

mere 200m (or, the approximate depth of a single

CloudSat vertical range gate) lower than the mean

identified cloud-echo-base height of 770m. This result

lends some credibility to the cloud-echo-base heights

summarized in Fig. 1.

Delineation of raining and nonraining clouds was

achieved through the use of the CloudSat 2C-PRECIP-

COLUMN precipitation incidence flag (Haynes et al.

2009). For this study, raining scenes were defined as those

flagged as rain certain, indicating that the unattenuated

near-surface (;600–840m) reflectivity Zu exceeded 0dB.

Scenes with either no rain (Zu , 215dB), rain possible

(215 , Zu , 27.5dB), or rain probable (27.5 , Zu ,
0dB) flags were classified as nonraining. By conservatively

defining raining CloudSat scenes as those flagged as rain

certain, the rainfall detection uncertainty herein is likely

considerably lower than the 20%–25% estimate put forth

by Stephens et al. (2010), where both rain certain and rain

probable flagswere used to demarcate rainfall. Countmaps

of the resulting nonraining and raining warm cloud distri-

butions (Figs. 2a,b, respectively) indicate that while most

tropical and subtropical oceanic regions were well repre-

sented ($1000 total counts), the greatest density of raining

and nonraining clouds were identified over the prominent

subtropical stratocumulus regions (e.g., Wood 2012).

To quantify the fractional occurrence of warm rainfall

for these clouds, a simple rain fraction was calculated by

dividing the raining cloud counts by the total (raining plus

nonraining) cloud counts. While the overall resulting rain

fraction for the CloudSat-observed cloud distribution was

25.4%, clear regional variability in the relative occurrence

of warm rainfall does exist (Fig. 2c). This CloudSat-only

overall fractional occurrence exceeds theA-Train-derived

estimate of 6.5% put forth by Lebsock et al. (2008), a

result that is likely related to the nonraining classification

Lebsock et al. (2008) assigned to warm, oceanic clouds

missed by CloudSat but detected by MODIS.

The CloudSat 2C-PRECIP-COLUMN product also

provided an estimate of the two-way, path-integrated

attenuation of the CPR beam due to hydrometeors

(hereafter PIA; Haynes et al. 2009). This field is related

to the column-integrated total water path and is ex-

plored in detail within section 3a.

b. Mesoscale model simulations

Mesoscale model output for this study was simulated

with RAMS (Cotton et al. 2003; Saleeby and van den

Heever 2013). Conceived and refined at Colorado State

University, RAMS is a nonhydrostatic, regional cloud-

resolving model. The bin-emulating, bulk cloud micro-

physical scheme operating within RAMS makes use

of lookup tables precalculated from a detailed bin-

resolving model to simulate the rate of change in cloud

and rain mixing ratios and number concentrations due

to collision and coalescence processes (Feingold et al.

1998; Saleeby and Cotton 2004).

To adequately evaluate the characterization of rain-

fall fromwarm clouds withinRAMS and to compare this

representation toCloudSat observations, a large, RAMS-

derived statistical sample was needed at a spatial reso-

lution comparable to that of CloudSat. Output from a

large-domain (6 3 105 km2), high-resolution (1-km hori-

zontal grid spacing with 32 model layers below an altitude

of 5 km)RAMSRCE experiment described by Igel et al.

(2015) was used for this purpose. Pertinent characteris-

tics of the model setup are summarized in Table 1. Ini-

tialized from a sounding characteristic of the mean

tropical atmosphere, the simulation utilized a two-

moment, bin-emulating bulk microphysical scheme, a

horizontally and vertically homogeneous aerosol con-

centration of 100 cc21, and was run for 70 days,

reaching a state of RCE at day 30. A number of simula-

tions operating under conditions of RCE have previously

been used to successfully study the characteristics of

tropical clouds (e.g., Stephens et al. 2008b; van den

Heever et al. 2011; Storer and van den Heever 2013). In

this study, hourly RAMS output from the final 3 weeks of

the simulation was analyzed.

To facilitate direct comparisons with CloudSat ob-

servations, all model data were processed with the

QuickBeam radar simulator (Haynes et al. 2007), which

was developed for this express purpose. Using a

specified frequency of 94GHz to mimic the CPR,

QuickBeam-simulated profiles of reflectivity and col-

umn PIA values from RAMS were available for com-

parison with those from CloudSat following processing.

To define consistent cloud boundaries for the RAMS

dataset, the relationship between the 2B-GEOPROF

cloud mask values and observed CPR reflectivities at all

altitudes was investigated for January and July 2007.

The mean reflectivities associated with the cloud mask

value of 20 used to define cloud boundaries in
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the CloudSat portion of this analysis were 226.0 and

225.8 dBZ for January and July 2007, respectively.

Based on these results, a reflectivity value of226dBZwas

used to define cloudy portions of the RAMS domains.

Accordingly, the cloud-base (top) height for a given cloud

layer was defined as the lowest (highest) model-level

height within a vertically contiguous block of model grid

points whose simulated reflectivities exceeded this

threshold value. After screening for RAMS grid boxes

that contained a single cloud layer with a top height at or

below the freezing-level height, a total of 71.6 million

RAMS warm, single-layered cloudy scenes were identi-

fied. To ensure sound comparisons with output from this

tropical RCE simulation, a number of additional obser-

vational subsetting experiments were applied to the full

CloudSat dataset; they are discussed in section 3c.

Utilizing reflectivity output from QuickBeam, raining

and nonraining clouds were delineated by applying the

same Zu threshold classifications outlined in section 2a.

The overall rain fraction for the RAMS-simulated warm

cloud distribution was 27.4%—a value that compares

very well with the corresponding CloudSat-identified

rain fraction of 25.4%.

3. Observed andmodeled warm rainfall occurrence

a. Dependence on column-integrated liquid water

Motivated by the desire to better understand the bulk

conversion of cloud water to rainwater within the cloud

column, it was of interest to first investigate the re-

lationship between column-integrated water mass and

the occurrence of CloudSat-observed and RAMS-

simulated warm rainfall. To this end, an approximately

linear mean relationship was found between total liquid

water path [TWP; sum of cloud water path (CWP),

drizzle water path (DWP), and rainwater path (RWP)]

and QuickBeam-simulated 94-GHz PIA values for the

RAMS warm cloud distribution (Fig. 3). Given this re-

lationship and the fact that PIA was a common field

between the processed model output and the CloudSat

observations, PIA was used as a proxy for column-

integrated water mass for these warm clouds.

The fractional occurrence of warm rainfall within the

CloudSat-observed and RAMS-simulated warm cloud

distributions is shown as a function of PIA percentiles at a

5% step in Fig. 4. Rainfall likelihoods within both data-

sets increased nearly monotonically as a function of in-

creasing PIA, in line with previously described direct

relationships between column-integrated water mass and

the occurrence of warm rainfall (Lebsock et al. 2008;

L’Ecuyer et al. 2009;Kubar et al. 2009; Suzuki et al. 2011).

CloudSat-observed warm rain was more likely than

not (50% fractional occurrence; green dashed line in

Fig. 4) at a PIA value of;3 dB, which corresponds to an

equivalent RAMS-derived TWP value of 325 gm22

(Fig. 3). Within RAMS, this same warm rainfall oc-

currence threshold was eclipsed at a PIA value of

;2 dB (TWP of ;225 gm22). This indicates that

RAMS-simulated warm clouds produced rainfall more

frequently at lower PIA values than their observed

counterparts—in line with the findings of Suzuki et al.

(2011) and suggesting that the conversion of cloud to

rainwater occurs more readily within the model than is

observed in nature.

The percentile portion of the analysis in Fig. 4 reveals

that the CloudSat distribution of PIA for these warm

clouds extended to higher values than were simulated

with RAMS. The median PIA value of the 95th–100th

CloudSat PIA percentile bin was more than twice as

large as that fromRAMS (11.6 and 5.3 dB, respectively).

FIG. 2. Maps of (a) nonraining and (b) raining warm, single-

layered cloud counts. (c) Map of the fraction of raining counts to

total (raining and nonraining) counts in each grid box. In (a) and

(b), grid boxes without any cloud counts are colored gray. In (c),

grid boxes with fewer than 100 total cloud counts are colored gray.
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If rain removes water mass from the atmospheric

column, a more efficient production of rain within

RAMSmay have acted to limit the maximum attainable

PIA within the modeled cloud distribution.

b. Relationship with cloud depth

This section explores the relationship between warm

rainfall occurrence and cloud depth. To ensure that the

warm clouds analyzed within this and subsequent sec-

tions were rooted within the boundary layer (i.e., not

high-based fragments of cloud situated below the

freezing level), the analysis was further restricted to

CloudSat-observed and RAMS-simulated warm, single-

layered clouds with cloud-echo-base heights identified

at or below 1000mAGL.While it is possible that surface

contamination of the CloudSat radar beam could ef-

fectively mask actual cloud bases residing below this

altitude, the surface sets the absolute limit for any ad-

ditional cloud depth that was effectively unidentified

through this methodology. While this screening step

reduced the total number of CloudSat (RAMS) clouds

analyzed to 18.1 million (70.8 million), the overall

CloudSat (RAMS) rain fraction increased by 3.3%–

28.7% (0.3%–27.7%). These constrained datasets form

the basis for the results presented throughout the re-

mainder of this study.

In composite, CloudSat-observed and RAMS-

simulated warm rainfall likelihoods increased with in-

creasing deciles of cloud depth (Fig. 5). These results are

qualitatively consistent with the observationally based

relationship described by Byers and Hall (1955) and

nearly quantitatively identical to those derived from a

limited amount of early (2006/07) CloudSat data pre-

sented by Stephens et al. (2008a), suggesting that these

relationships are robust. The notable exception to the

general cloud depth–rain fraction relationship agree-

ment between CloudSat and RAMS is found at cloud

depths of ;2 km, where simulated clouds were up to

20% less likely to rain than their observed counterparts.

This result could be related to factors such as atmo-

spheric thermodynamic structure or entrainment that

are outside of the scope of the macrophysical focus of

this study.

As the cloud attribute of depth in itself was not ex-

pected to actively promote warm rainfall production, it

was of interest to determine the physical mechanism or

mechanisms responsible for this robust relationship. In

section 3a, it was shown that observed and simulated

warm clouds were more likely to rain as column-

integrated water mass increased (Fig. 4). In turn, column-

integrated water mass is known to be directly related

to cloud depth. In adiabatic conceptualizations of

shallow clouds, wherein cloud liquid water content in-

creases linearly with height above cloud base, adiabatic

cloud liquid water path is proportional to the square of

cloud depth (e.g., Albrecht et al. 1990; Pawlowska and

Brenguier 2003).

The thick mean curves in Fig. 6 show that PIA in-

creased as a function of deciles of cloud depth for both

observed and simulated warm clouds. This indicates that

in the mean, deeper warm clouds containedmore and/or

larger liquid hydrometeors that acted to collectively

attenuate the real and simulated 94-GHz radar beam

to a greater degree. These results collectively imply that

the increased availability of liquid water within deeper

clouds preferentially promoted the production of their

rainfall through warm rain processes—consistent with

the conclusions of Reiche and Lasher-Trapp (2010).

TABLE 1. RAMS RCE simulation characteristics. This simulation

is referred to as DM_A100 within Igel et al. (2015).

Horizontal

domain

3000 3 200 grid points; 1-km grid spacing

Vertical

domain

65 grid points; 25-km domain top altitude; 70-m

surface grid spacing stretched to 750m aloft

Microphysical

scheme

Two-moment, bin-emulating bulk scheme

Hydrometeor

species

Eight in total: cloud, drizzle, rain, pristine ice,

snow, aggregates, graupel, and hail

SST Fixed at 300K

Incoming solar

radiation

Fixed at 450W m22

Aerosol Fixed (horizontally and vertically) at 100 cc21

FIG. 3. RAMS water path values as a function of percentiles of

correspondingQuickBeam-simulated 94-GHzPIA at a 5% step for

the warm cloud subset. Thick points represent themean water path

value in each PIA percentile bin. Lower and upper bars represent

the 25th and 75th water path percentiles in each PIA percentile bin,

respectively. TWP (black) is the sum of CWP (blue), DWP (light

green), and RWP (dark green).
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Another plausible physical link between cloud depth

and rainfall occurrence could simply be time. De-

veloping warm clouds inherently require some amount

of time to grow to a given depth. If more time is nec-

essary for deeper warm clouds to achieve their greater

altitudes, the amount of time available for warm rain

processes to act within these clouds would also be

increased—a factor that is critical to the production of

warm rainfall (e.g., Reiche and Lasher-Trapp 2010;

Burnet andBrenguier 2010). The composite relationships

between cloud depth and rainfall occurrence derived

within this section are inherently representative of

clouds in various stages of development, maturity, and

decay. As they were produced from averaging many

snapshot scenes, it is not known, for instance, what

percentage of 1-km-deep clouds ascended to greater

depths or produced rainfall at later times. The relation-

ships between cloud life cycle, cloud macrophysical

characteristics, and rainfall are explored in further detail

within section 4.

c. Relationship with cloud layer attenuation

Thus far, it has been shown that the likelihood of

warm rainfall from CloudSat-observed and RAMS-

simulated liquid-phase clouds increased with both in-

creasing PIA (Fig. 4) and increasing cloud depth (Fig. 5).

However, these two cloud macrophysical characteristics

are, in the mean, directly related to one another (Fig. 6).

The aim of this section is to investigate the relative role

of each characteristic by analyzing the joint probability

that warm clouds with given pairs of PIA and depth

attributes produced rainfall. In doing so, insight was

gained on how the concentration of liquid water within

these observed and simulated warm clouds influenced

their propensity to precipitate.

The methodology developed to investigate these joint

probabilities of rainfall relied upon sequential decile

partitions of the warm cloud datasets with respect to

PIA and cloud depth. First, decile values of PIA were

identified for the CloudSat and RAMS warm cloud

distributions, and these decile values were used to define

PIA bin boundaries. Within each identified PIA decile

bin, decile values of cloud depth were calculated and

used to define corresponding cloud depth bin bound-

aries. With these two decile-partitioning steps com-

plete, each PIA–cloud depth decile bin pair within the

CloudSat and RAMS datasets contained approximately

181 000 and 708 000 warm cloud scenes, respectively.

The execution of these two distinct partitioning steps

stratified the observed and simulated warm cloud dis-

tributions in physically meaningful ways.Mean values of

RAMS in-cloud averaged total water content (TWC; the

sum of cloud, drizzle and rainwater contents) as a

function of deciles of cloud depth within each PIA decile

bin (colored curves) are shown in Fig. 7. For approxi-

mately constant PIA (along any given colored curve),

the mean in-cloud averaged TWC decreases with in-

creasing cloud depth, as expected. Crude estimates of

CloudSat cloud-mean TWC derived for an analysis dis-

cussed within section 5 were qualitatively consistent

with the RAMS-derived trends in Fig. 7.

The fractional occurrence of warm rainfall as a func-

tion of cloud depth, stratified by PIA, is shown in Fig. 8.

Beginning with the RAMS trends in Fig. 8b, for any

FIG. 4. Rain fraction as a function of percentiles of PIA at a 5%

step for CloudSat (black) and RAMS (red) warm clouds. Nodes

represent the median PIA value within each PIA percentile bin. In

this and subsequent figures, the dashed green line is plotted at

a constant fractional occurrence of 50% to indicatewhere rainfall is

more likely than not.

FIG. 5. Rain fraction as a function of deciles of cloud depth for

CloudSat (black) and RAMS (red) warm clouds. Nodes represent

the median cloud depth in each cloud depth decile bin.
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given cloud depth, simulated warm rainfall was in-

creasingly more likely with increasing PIA, as the

amount of liquid water available for warm rain processes

increased in this direction (Figs. 6 and 7). Along any

given approximately constant PIA curve, RAMS warm

rainfall generally became less likely—or, in the case of

the lowest PIA bins, remained equally unlikely—as

cloud depth increased. Intuitively, warm rainfall was less

probable when the same amount of water was spread

over a deeper simulated cloud layer, as this scenario

resulted in lower mean in-cloud averaged TWC. These

trends collectively underscore the importance of liquid

water availability for the production of warm rainfall

within RAMS.

Despite comparable PIA and cloud depth decile bins,

the fractional occurrences of warm rainfall derived

from the CloudSat dataset (Fig. 8a) are, at first glance,

drastically different from those characterizing warm

clouds simulated with RAMS. While observed warm

rainfall from clouds of the same depth was also in-

creasingly more likely with increasing PIA, the mag-

nitude of this increase was less pronounced than it was

in the RAMS trends (Fig. 8b). As was shown in section

3a, the likelihood of rain from RAMS-simulated warm

clouds increased more sharply as a function of in-

creasing PIA than observations indicated (Fig. 4).

These results suggest that simulated warm rain pro-

cesses too efficiently converted cloud water to rain

(Suzuki et al. 2011).

At similar values of observed and simulated PIA, the

variation ofCloudSatwarm rainfall likelihoodwith respect

to cloud depth was markedly different than that from

RAMS. Along most of the lower CloudSat PIA decile bin

curves in Fig. 8a, the fractional occurrence of rainfall

actually increased with increasing warm cloud depth, in

contrast to the RAMS-derived relationships in Fig. 8b.

This would imply that deeper observed warm clouds with

the same PIA as their shallower counterparts were

actually more likely to rain, despite likely having lower

average concentrations of liquid water mass within their

volumes (Fig. 7).While the likelihood of RAMS-simulated

warm rainfall is strongly governed by the availability of

water within a cloud, these trends suggest that such a

relationship is not as clearly defined for clouds observed

within nature. In contrast to the low PIA trends,CloudSat-

observed rainfall likelihood as a function of cloud depth

within the highest PIA decile bin was more similar to that

fromRAMS; rainfall generally became less likely along this

high PIA curve as cloud depth increased past;1.25km.

To ensure that these CloudSat–RAMS rainfall oc-

currence trend differences were not simply related to the

nature of the warm cloud observations themselves, the

CloudSat distribution was further constrained through a

series of experiments designed to facilitate more direct

comparisons with the RAMS warm cloud distribution

(Table 2). While the RAMS RCE simulation was ini-

tialized with a sounding characteristic of the mean

tropical atmosphere and utilized a fixed sea surface

temperature (SST) of 300K (section 2b), the surprising

CloudSat rainfall occurrence trends in Fig. 8a held

FIG. 6. PIA as a function of deciles of cloud depth for CloudSat

(black) and RAMS (red) warm clouds. Thick curves represent the

mean trend. Nodes along these curves represent the median cloud

depth within each cloud depth decile bin. Lower and upper bars

represent the 25th and 75th PIA percentiles, respectively, within

each cloud depth decile bin.

FIG. 7. Mean in-cloud averaged TWC as a function of deciles of

cloud depth, stratified by deciles of PIA (colored curves) for

RAMS warm clouds. Nodes along each PIA curve represent the

median cloud depth within each cloud depth decile bin. Lower and

upper bars represent the 25th and 75th TWC percentiles, re-

spectively, within each joint PIA–cloud depth bin.
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when the warm cloud distribution was constrained to

observations made either within the tropics (from 208N
to 208S) or on a corresponding SST interval (300 6
0.25K). CloudSat crosses the equator at ;1330 and

;0130 local time on the ascending and descending seg-

ments of its sun-synchronous orbit, respectively. Segre-

gation of the CloudSat warm cloud observations into

ascending (daytime) and descending (nighttime) orbit

groups to assess the magnitude of day or night de-

pendencies within the observational dataset yielded

rainfall occurrence trends that were nearly identical to

those in Fig. 8a.

An additional lower-tropospheric static stability

(LTSS) stratification experiment was performed (Table

2) to ensure that the increase in observed rain fraction

with cloud depth within the lowest PIA decile bins was

not an artifact of averaging warm cloud properties

across different atmospheric thermodynamic regimes.

For each observed warm cloud, LTSS was calculated

from ancillary CloudSat ECMWF-AUX data as the

potential temperature difference between 700 hPa and

the surface (e.g., Lebsock et al. 2008). As is shown in

Fig. 9, clouds observed within environments with the

20% highest LTSS (LTSS $ 19.58C) were generally

shallower, had lower PIA, and rained less often than

those observed within the 20% lowest LTSS environ-

ments (LTSS # 14.48C), as expected. However, within

both LTSS groups, rain fraction increased with in-

creasing cloud depth within the lowest PIA decile bins

(Fig. 9) in a manner that was still inconsistent with the

trends from RAMS (Fig. 8b).

The CloudSat-derived results presented within this

section were largely counterintuitive. The remainder of

this paper is devoted to examining what insight on these

cloud macrophysical–rainfall occurrence relationships

may be gained through a more direct examination of

cloud life cycle.

4. Toward better understanding cloud life cycle

Cumulus cloud life cycle is often conceptualized as

consisting of three stages: growth, maturity, and dissi-

pation (e.g., Malkus 1952; Byers and Hall 1955; Heus

et al. 2009; Cotton et al. 2010; Witte et al. 2014;

Katzwinkel et al. 2014; Borque et al. 2014). Within this

construct, incipient clouds increase in depth through

their growth stage, cease growth and precipitate any rain

hydrometeors they have managed to develop during

their mature phase, and break apart as a result of factors

such as water mass rainout and/or entrainment in their

dissipation stage. Thus, while the production of rainfall

from warm clouds in this simple view is related to cloud

depth—and, by association, TWP or PIA (Fig. 6)—it is

ultimately dependent upon another critical, and perhaps

all encompassing, factor: time. As all of the CloudSat

and RAMS composite cloud macrophysical–rainfall

FIG. 8. Rain fraction as a function of deciles of cloud depth,

stratified by deciles of PIA (colored curves) for warm clouds

(a) observed by CloudSat and (b) simulated with RAMS. Nodes

along each PIA curve represent the median cloud depth within

each cloud depth decile bin.

TABLE 2. AdditionalCloudSat warm cloud subsetting experiments

and associated resulting distribution metrics.

Stratification Total warm cloud counts Rain fraction

None (reference) 1.81 3 107 28.7%

SST 5 300 6 0.25K 8.04 3 105 37.4%

Tropics (208N–208S) 8.10 3 106 32.8%

Ascending overpasses 6.97 3 106 29.5%

Descending overpasses 1.12 3 107 28.2%

High LTSS (.19.58C) 3.73 3 106 19.1%

Low LTSS (,14.48C) 3.59 3 106 33.9%

NOVEMBER 2015 K I NG ET AL . 4083



occurrence relationships presented within previous

sections were derived from many individual snapshot

captures of observed and simulated warm clouds, they

are inherently representative of the collective amount of

time clouds spent within these various life stages. The

aim of this section is to explore the ways in which dif-

ferences in the evolution ofmodeled and observedwarm

clouds through these life stages account for the differ-

ences in simulated and observed rainfall occurrence

statistics discussed in section 3c.

In their terminal–transient analysis framework, Luo

et al. (2009) calculated cloud-top temperature differences

for CloudSat-identified cumulus congestus clouds by

making use of collocated A-Train observations and

ECMWF reanalysis data. Cloud-top height measure-

ments from CloudSat were used in conjunction with

ECMWF-AUX environmental temperature profiles to

determine the environmental temperature Tenv at cloud-

top height. Collocated MODIS brightness temperatures

were then used to calculate cloud-top temperature (CTT)

for each CloudSat-identified deep convective cloud, un-

der the assumption that limited cloud-top emissivity

caused radar-derived cloud tops to be ;1km higher or,

following moist adiabatic lapse rate arguments, ;6K

cooler than these brightness temperatures would suggest.

The methodology used to assess warm cloud maturity

within the present study closely resembles that of Luo

et al. (2009). However, in comparison to the cloud-top

temperature differences characterizing the more vigor-

ously convecting cumulus congestus clouds examined

within the earlier study, themagnitudes of the analogous

temperature differences for the warm clouds analyzed

here are likely significantly smaller, potentially border-

ing upon the magnitude of the uncertainties in the ob-

servationally based methodology itself. Thus, instead of

directly applying the same procedure outlined by Luo

et al. (2009) to warm clouds observed by CloudSat, a

similar cloud-top temperature difference analysis was

carried out only for RAMS-simulated warm clouds. For

each identified RAMS warm cloud, CTT was simply

defined as the temperature at the analyzed cloud-top

height. The corresponding Tenv for each of these clouds

was then calculated by averaging noncloudy model

temperatures for grid boxes at the same cloud-top alti-

tude within a 15km 3 15 km box surrounding the cloud

of interest. Estimates of Tenv were calculated from an

average of ;56 neighboring noncloudy model grid

points within these search boxes.

Through this methodology, 21.5% of the entire

RAMS warm cloud distribution was found to be

characterized by CTT . Tenv (positive buoyancy). To

compare positively and negatively buoyant RAMS-

simulated warm clouds, two subsets were drawn from

the high- and low-end tails of this cloud-top buoyancy

distribution. Because the overall distribution was

heavily weighted toward negatively buoyant clouds, the

2.5% most buoyant RAMS-simulated warm clouds,

those with CTTs 0.47K or more warmer than their

surrounding environments, were chosen to represent the

positively buoyant subset (hereafter, POSbuoyant).

Correspondingly, the 2.5% least buoyant warm clouds,

those with CTTs 1.69K or more cooler than their sur-

rounding environments, were chosen to represent the

negatively buoyant subset (hereafter, NEGbuoyant).

All results derived from these subsets were found to be

qualitatively similar to those derived from the 10%most

positively and negatively buoyant simulated clouds

within the full cloud-top buoyancy distribution.

The likelihood of rainfall fromwarm clouds simulated

with RAMS was found to be related to cloud-top

buoyancy (Fig. 10a). Rainfall was most probable from

the RAMS clouds that were most negatively buoyant at

cloud top. Physically, this result is in line with the con-

ceptual view of cloud life cycle outlined at the beginning

of this section and implies that rain is more likely to fall

from mature or decaying clouds. The difference be-

tween the NEGbuoyant and POSbuoyant cloud-top

normalized mean reflectivity profiles in Fig. 10b pro-

vides further evidence for this assertion. Higher

reflectivity values within the vast majority of the

NEGbuoyant cloud column indicate that these clouds

were characterized by larger liquid hydrometeors than

were found within the POSbuoyant subset.

The overall RAMSwarm rainfall occurrence trends in

Fig. 8b were recalculated for the NEGbouyant and

POSbuoyant subsets. The RAMS NEGbuoyant rain

fraction relationships in Fig. 11a largely mirror the

FIG. 9. As in Fig. 8a, but for CloudSat-observed warm clouds as-

sociated with the 20% highest (blue) and 20% lowest (red) LTSS.
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general RAMS trends in Fig. 8b. As the majority of the

clouds within the entire RAMS cloud distribution were

negatively buoyant at cloud top, it was no surprise that

rainfall occurrence trends from these negatively buoy-

ant clouds so closely mirrored those from the general

warm cloud case.

Rainfall occurrence trends characterizing the POS-

buoyant RAMSwarm cloud subset in Fig. 11b displayed

features more characteristic of the CloudSat-derived

relationships in Fig. 8a. Similar to the rain fraction

trends derived from the overall RAMS (Fig. 8b) and

CloudSat (Fig. 8a) cloud distributions, rain fraction

within the highest PIA decile bins still decreased with

increasing cloud depth. However, within the lowest

PIA decile bins, rain was more likely to fall from

deeper clouds, similar to the overall CloudSat rainfall

occurrence trends (Fig. 8a). If clouds are positively

buoyant and, thus, growing, then perhaps deeper

growing clouds with similar, or even slightly higher PIA

values than their shallower counterparts have simply had

more time to produce rainfall. When clouds contain large

amounts of liquid water (high PIA), the greater avail-

ability of liquid water likely promotes a vigorous, more

rapid conversion of cloud water to rainwater.

The cloud-top normalized reflectivity profile differ-

ences in Fig. 12 provide further evidence for cloud ma-

turity being the cause for the unexpected increase in rain

fraction as a function of cloud depth within the lowest

PIA decile bins for the CloudSat and POSbuoyant

RAMS distributions (Figs. 8a and 11b, respectively). For

observed and POSbuoyant simulated clouds with PIA

values less than 1dB, a cloud depth value of 1.5 km was

FIG. 10. (a) Rain fraction as a function of deciles of the temperature difference between CTT and Tenv for RAMS

warm clouds. (b) Profile difference of the mean QuickBeam RAMS reflectivity profiles for the NEGbuoyant

[(CTT 2 Tenv) # 21.69K] minus POSbuoyant [(CTT 2 Tenv) $ 0.47K] subsets. Before averaging, height profiles

were normalized by individual identified cloud-top heights (CTL) to account for clouds of differing depths.

FIG. 11. As in Fig. 8b, but for the (a) NEGbuoyant and (b) POSbuoyant RAMS-simulated warm clouds.
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used to separate the remaining distributions into shallow

and deep groups. The deep groups within each subset

were more likely to rain than their shallow counterparts,

despite lower cloud-mean TWC. Figure 12 shows the

mean cloud-top normalized reflectivity profile for the

deep subset minus the corresponding mean profile for

the shallow subset within the overall CloudSat and

POSbuoyant RAMS distributions. Deeper clouds in the

observed and modeled distributions were generally

characterized by higher reflectivities below cloud top

than their shallower counterparts—in line with the

RAMS NEGbuoyant–POSbuoyant reflectivity profile

differences in Fig. 10b. These results suggest that as

these clouds developed in time, hydrometeors within

deeper, more mature clouds grew larger and were lo-

cated lower than those found within their shallower,

incipient stage counterparts.

Collectively, these results implied that warm clouds

observed by CloudSat spent more time in their growth

stage than did those simulated with RAMS. That the

majority of RAMS warm clouds were found to be neg-

atively buoyant at cloud top suggested that simulated

clouds matured, and produced rainfall, more quickly

than did those observed in nature through the lens of

CloudSat.

5. Discussion and conclusions

In this study, modeled and observed warm, maritime

rainfall occurrence and its composite statistical re-

lationships with cloud macrophysical properties were

analyzed. It was shown that approximately one-quarter

of the CloudSat-observed and RAMS-simulated warm,

single-layered clouds produced rainfall and that this

rainfall was increasingly more likely when these clouds

contained greater amounts of column-integrated water

mass (as represented by PIA). This supports a growing

body of evidence that the probability of warm rainfall

steadily increases as a function of column-integrated

water mass (Lebsock et al. 2008; L’Ecuyer et al. 2009;

Kubar et al. 2009; Suzuki et al. 2011). However,

RAMS-simulated warm clouds rained more frequently

at lower PIA values than observations indicated, sug-

gesting that the parameterized cloud-to-rain conver-

sion processes within RAMS produce rainfall more

readily than was observed in nature (Suzuki et al.

2011). While modeled and observed warm rain was

more likely to fall from deeper clouds, these deeper

clouds were associated with higher mean PIA values,

suggesting that the increased availability of liquid

water was one factor that preferentially supported

more active warm rain processes within clouds of the

greatest vertical extent.

The calculation of rain fraction as a joint function of

PIA and cloud depth revealed significant differences

between the model and observations that effectively

highlighted differing rainfall production sensitivities to

the mean density of liquid water within the cloudy col-

umn. RAMS-simulated warm rain was most probable

when a large amount of liquid water was confined to a

shallow cloud layer, as this combination resulted in the

highest cloud-mean TWC and, thus, likely supported

vigorous warm rain coalescence processes. While water

availability was certainly one factor that determined an

observed warm cloud’s propensity to produce rainfall,

another intervening factor related to cloud depth

seemed nearly as critical when PIA was low.

The same CloudSat and RAMS warm rainfall occur-

rence statistics in Fig. 8 can alternatively be plotted as a

simultaneous function of cloud-mean TWC and cloud

depth (Fig. 13). For the CloudSat trends in Fig. 13a,

mean in-cloud TWC was estimated by first obtaining an

estimate of CloudSat TWP from PIA using the linear

form TWP ’ c(PIA), where c 5 107.5 gm22 dB21 and

was derived from the RAMS relationships in Fig. 3.

These TWP estimates were then divided by the depth

of each observed cloud to obtain crude estimates of

in-cloud-mean CloudSat TWC. The rainfall occur-

rence trends in Fig. 13 directly indicate that warm

rainfall within RAMS is more strongly governed by

FIG. 12. For CloudSat (black) and POSbuoyant RAMS (red)

warm clouds with PIA # 1 dB, the difference of the mean re-

flectivity profiles from clouds with depths .1.5 km minus clouds

with depths #1.5 km. Before averaging, height profiles were nor-

malized by individual identified cloud-top heights to account for

clouds of differing depths.While 2B-GEOPROF-identified surface

clutter was screened from the CloudSat profiles and did not con-

tribute to these means, normalized height layers with more than

5% of profiles flagged as surface clutter were conservatively ex-

cluded from the CloudSat profile difference curve.

4086 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



the concentration of liquid water within the cloud

than observations suggest.

Further stratification of the RAMS warm cloud dis-

tribution by cloud-top buoyancy provided insight into

how these composite warm rainfall occurrence statistics

were influenced by cloud life cycle. Rainfall likelihoods

for positively buoyant simulated clouds exhibited prop-

erties more similar to those characterizing the overall

observed cloud distribution than did those derived from

the negatively buoyant simulated subset. This prompted

the suggestion that the CloudSatwarm cloud distribution

was likely characterized by greater proportions of posi-

tively buoyant, developing clouds.

Based on these results, a conceptual representation of

the temporal evolution of observed and simulated warm

clouds was developed (Fig. 14). In short, it is hypothe-

sized that warm clouds observed within nature mature

more gradually in time than do those simulated with

RAMS. While increasing liquid water contents trigger

the rapid development of rainfall within RAMS clouds,

the same liquid water contents do not so readily support

actual rain production (e.g., time t2 in Fig. 14). If these

cloud distributions were sampled randomly, it is ex-

pected thatCloudSatwould observe greater proportions

of developing (positively buoyant) cloud scenes than

are represented within the comparable RAMS cloud

distribution.

Throughout this study, it has been assumed that the

three-dimensional resolutions of theCloudSat and RAMS

datasets were similar enough to one another to permit

direction comparisons and sufficient enough to resolve

warm clouds. While CloudSat observes the real atmo-

sphere within its 1.7km 3 1.4km horizontal field of view

and 240-m vertical range gate spacing, the atmosphere

is resolved at a 1-km horizontal resolution and a

stretched vertical grid within the RAMS RCE simula-

tion. Although it is argued that the similarity of these

scales is valuable when comparing a large statistical

sample from the two datasets over representative spa-

tial domains, rainfall from shallow clouds is known to

vary on horizontal scales much finer than the model

and observational resolutions analyzed herein (e.g.,

Rauber et al. 2007; Zuidema et al. 2012). While it is

difficult to quantify the bias introduced by these reso-

lutions and their differences, relevant processes that

are difficult to faithfully observe remotely and resolve

in a model at these scales likely include entrainment,

turbulence, sedimentation, and updraft velocity. More-

over, observational sensitivity and subfield of view in-

homogeneity in the cloud field [see MODIS-based

CloudSat scene homogeneity methods in Kubar et al.

(2009) and Lebsock et al. (2011)] could conceivably

skew the observational results accordingly.

In an initial attempt to assess the magnitude of the

bias introduced by horizontal resolution differences

between CloudSat and RAMS, an experiment was per-

formed wherein the native 1-km horizontal resolution

RAMS output was averaged over a CloudSat-like field

of view of 2 km 3 1 km. If either RAMS cloud scene

within this effective field of view was identified as rain-

ing, the resulting averaged scene was flagged as raining.

While this averaging resulted in a 6.3% increase in the

overall RAMS rain fraction to 33.6%, the RAMS rain-

fall occurrence results in Figs. 4, 5, and 8b remained

qualitatively consistent for this averaged RAMS distri-

bution. Therefore, we conclude that if progress is to be

FIG. 13. Rain fraction as a function of deciles of in-cloud-mean TWC, stratified by deciles of cloud depth (colored

curves) for warm clouds (a) observed by CloudSat and (b) simulated with RAMS. Nodes along each cloud depth

curve represent the median in-cloud-mean TWC values within each in-cloud-mean TWC decile bin. While RAMS

TWCvalues were obtained directly frommodel output,CloudSatTWCestimates were derived fromPIA and cloud

depth. See text for details.
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made in evaluating model performance in simulating

shallow clouds and their rainfall on near-global scales, it

is advantageous if the resolution of the simulation is

readily verifiable against observations obtained over

climatically relevant spatial and temporal scales, as is

done here.

While the CloudSat-derived rainfall occurrence

trends were found to be insensitive to whether the

observations were taken during ascending (;1330 local

time equatorial crossing) or descending (;0130 local time

equatorial crossing) orbit portions, CloudSat cannot be

used to analyze the full diurnal cycle of warm clouds and

their rainfall. The consistency of the results correspond-

ing to these two times, however, suggests that it is un-

likely that the composite character of life cycle for these

warm, maritime clouds changes appreciably between the

daytime and the nighttime. Future observational research

on cloud life cycle would nonetheless benefit from

observations of the full diurnal cycle to rule out a po-

tential diurnal bias.

Although it is expected that the cloud-top temperature

difference methodology used within this study should

give a crude indication of the distribution of cloud

maturity, the cloud life cycle ideas developed herein

would greatly benefit from more direct measurements

of cloud evolution. Within RAMS, a cloud-tracking

algorithm (e.g., Dawe and Austin 2012; Witte et al.

2014) could be developed to trace the full life cycle of

simulated warm clouds and identify temporal rainfall

onset. Methodologies designed to track cloud features

observed by satellites in time are inherently hindered

by the nature of the observations themselves. While it

is conceivable that CloudSat observations of warm

clouds could be combined with ancillary satellite data

to track cloud features in time, the limited spatial and

temporal resolutions of these satellite datasets may

inhibit such efforts. Additional observational insight

intowarmcloud evolutionmay be better achieved through

the analysis of surface-based measurements (e.g., Borque

et al. 2014).

The two-moment microphysical scheme employed by

RAMS within the present study is based upon bin

microphysics—the current benchmark for all microphys-

ical schemes. Moreover, Suzuki et al. (2011) showed that

FIG. 14. Schematic representation of the proposed composite temporal evolution of CloudSat-observed and RAMS-simulated warm

clouds. Positive, neutral, and negative cloud-top buoyancy are denoted by plus (1), plus and minus (1 2) , and minus (2) symbols,

respectively.
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this RAMS scheme markedly outperformed a simpler,

single-moment Kessler-type microphysical scheme used

within NICAM in the realism of its depiction cloud-to-

rainwater conversion. Thus, while this study concludes

that RAMS-parameterized warm rain processes pro-

duced rainfall more efficiently and more quickly than

was suggested by CloudSat observations, such behavior

is likely to be more pronounced in models with less so-

phisticated microphysical schemes.
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